Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 15: 1353151, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38348415

RESUMO

Reproduction in mammals is controlled by hypothalamic gonadotropin-releasing hormone (GnRH) neurons. Recent studies from our laboratory established that the basal ganglia of the human brain contain additional large populations of GnRH synthesizing neurons which are absent in adult mice. Such extrahypothalamic GnRH neurons mostly occur in the putamen where they correspond to subsets of the striatal cholinergic interneurons (ChINs) and express GnRHR autoreceptors. In an effort to establish a mouse model for functional studies of striatal GnRH/GnRHR signaling, we carried out electrophysiological experiments on acute brain slices from male transgenic mice. Using PN4-7 neonatal mice, half of striatal ChINs responded with transient hyperpolarization and decreased firing rate to 1.2 µM GnRH, whereas medium spiny projection neurons remained unaffected. GnRH acted on its specific receptor because no response was observed in the presence of the GnRHR antagonist Antide. Addition of the membrane-impermeable G protein-coupled receptor inhibitor GDP-ß-S to the internal electrode solution eliminated the effect of GnRH. Further, GnRH was able to inhibit ChINs in presence of tetrodotoxin which blocked action potential mediated events. Collectively, these data indicated that the receptor underlying the effects of GnRH in neonatal mice is localized within ChINs. GnRH responsiveness of ChINs was transient and entirely disappeared in adult mice. These results raise the possibility to use neonatal transgenic mice as a functional model to investigate the role of GnRH/GnRHR signaling discovered earlier in adult human ChINs.


Assuntos
Hormônio Liberador de Gonadotropina , Receptores LHRH , Animais , Masculino , Camundongos , Neurônios Colinérgicos , Hormônio Liberador de Gonadotropina/farmacologia , Mamíferos , Camundongos Transgênicos , Transdução de Sinais
2.
J Biol Chem ; 299(9): 105121, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37536628

RESUMO

Single-cell transcriptomics are powerful tools to define neuronal cell types based on co-expressed gene clusters. Limited RNA input in these technologies necessarily compromises transcriptome coverage and accuracy of differential expression analysis. We propose that bulk RNA-Seq of neuronal pools defined by spatial position offers an alternative strategy to overcome these technical limitations. We report a laser-capture microdissection (LCM)-Seq method which allows deep transcriptome profiling of fluorescently tagged neuron populations isolated with LCM from histological sections of transgenic mice. Mild formaldehyde fixation of ZsGreen marker protein, LCM sampling of ∼300 pooled neurons, followed by RNA isolation, library preparation and RNA-Seq with methods optimized for nanogram amounts of moderately degraded RNA enabled us to detect ∼15,000 different transcripts in fluorescently labeled cholinergic neuron populations. The LCM-Seq approach showed excellent accuracy in quantitative studies, allowing us to detect 2891 transcripts expressed differentially between the spatially defined and clinically relevant cholinergic neuron populations of the dorsal caudate-putamen and medial septum. In summary, the LCM-Seq method we report in this study is a versatile, sensitive, and accurate bulk sequencing approach to study the transcriptome profile and differential gene expression of fluorescently tagged neuronal populations isolated from transgenic mice with high spatial precision.

3.
Front Endocrinol (Lausanne) ; 13: 960769, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36093104

RESUMO

Kisspeptin neurons residing in the rostral periventricular area of the third ventricle (KPRP3V) and the arcuate nucleus (KPARC) mediate positive and negative estrogen feedback, respectively. Here, we aim to compare transcriptional responses of KPRP3V and KPARC neurons to estrogen. Transgenic mice were ovariectomized and supplemented with either 17ß-estradiol (E2) or vehicle. Fluorescently tagged KPRP3V neurons collected by laser-capture microdissection were subjected to RNA-seq. Bioinformatics identified 222 E2-dependent genes. Four genes encoding neuropeptide precursors (Nmb, Kiss1, Nts, Penk) were robustly, and Cartpt was subsignificantly upregulated, suggesting putative contribution of multiple neuropeptides to estrogen feedback mechanisms. Using overrepresentation analysis, the most affected KEGG pathways were neuroactive ligand-receptor interaction and dopaminergic synapse. Next, we re-analyzed our previously obtained KPARC neuron RNA-seq data from the same animals using identical bioinformatic criteria. The identified 1583 E2-induced changes included suppression of many neuropeptide precursors, granins, protein processing enzymes, and other genes related to the secretory pathway. In addition to distinct regulatory responses, KPRP3V and KPARC neurons exhibited sixty-two common changes in genes encoding three hormone receptors (Ghsr, Pgr, Npr2), GAD-65 (Gad2), calmodulin and its regulator (Calm1, Pcp4), among others. Thirty-four oppositely regulated genes (Kiss1, Vgf, Chrna7, Tmem35a) were also identified. The strikingly different transcriptional responses in the two neuron populations prompted us to explore the transcriptional mechanism further. We identified ten E2-dependent transcription factors in KPRP3V and seventy in KPARC neurons. While none of the ten transcription factors interacted with estrogen receptor-α, eight of the seventy did. We propose that an intricate, multi-layered transcriptional mechanism exists in KPARC neurons and a less complex one in KPRP3V neurons. These results shed new light on the complexity of estrogen-dependent regulatory mechanisms acting in the two functionally distinct kisspeptin neuron populations and implicate additional neuropeptides and mechanisms in estrogen feedback.


Assuntos
Núcleo Arqueado do Hipotálamo , Kisspeptinas , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Estrogênios/metabolismo , Estrogênios/farmacologia , Kisspeptinas/genética , Kisspeptinas/metabolismo , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Fatores de Transcrição/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(27): e2113749119, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35763574

RESUMO

Kisspeptin neurons in the mediobasal hypothalamus (MBH) are critical targets of ovarian estrogen feedback regulating mammalian fertility. To reveal molecular mechanisms underlying this signaling, we thoroughly characterized the estrogen-regulated transcriptome of kisspeptin cells from ovariectomized transgenic mice substituted with 17ß-estradiol or vehicle. MBH kisspeptin neurons were harvested using laser-capture microdissection, pooled, and subjected to RNA sequencing. Estrogen treatment significantly (p.adj. < 0.05) up-regulated 1,190 and down-regulated 1,139 transcripts, including transcription factors, neuropeptides, ribosomal and mitochondrial proteins, ion channels, transporters, receptors, and regulatory RNAs. Reduced expression of the excitatory serotonin receptor-4 transcript (Htr4) diminished kisspeptin neuron responsiveness to serotonergic stimulation. Many estrogen-regulated transcripts have been implicated in puberty/fertility disorders. Patients (n = 337) with congenital hypogonadotropic hypogonadism (CHH) showed enrichment of rare variants in putative CHH-candidate genes (e.g., LRP1B, CACNA1G, FNDC3A). Comprehensive characterization of the estrogen-dependent kisspeptin neuron transcriptome sheds light on the molecular mechanisms of ovary-brain communication and informs genetic research on human fertility disorders.


Assuntos
Núcleo Arqueado do Hipotálamo , Estrogênios , Fertilidade , Kisspeptinas , Neurônios , Ovário , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Estrogênios/metabolismo , Feminino , Fertilidade/genética , Perfilação da Expressão Gênica , Humanos , Hipogonadismo/congênito , Hipogonadismo/genética , Kisspeptinas/genética , Kisspeptinas/metabolismo , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Ovário/metabolismo
5.
Elife ; 102021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34128468

RESUMO

Human reproduction is controlled by ~2000 hypothalamic gonadotropin-releasing hormone (GnRH) neurons. Here, we report the discovery and characterization of additional ~150,000-200,000 GnRH-synthesizing cells in the human basal ganglia and basal forebrain. Nearly all extrahypothalamic GnRH neurons expressed the cholinergic marker enzyme choline acetyltransferase. Similarly, hypothalamic GnRH neurons were also cholinergic both in embryonic and adult human brains. Whole-transcriptome analysis of cholinergic interneurons and medium spiny projection neurons laser-microdissected from the human putamen showed selective expression of GNRH1 and GNRHR1 autoreceptors in the cholinergic cell population and uncovered the detailed transcriptome profile and molecular connectome of these two cell types. Higher-order non-reproductive functions regulated by GnRH under physiological conditions in the human basal ganglia and basal forebrain require clarification. The role and changes of GnRH/GnRHR1 signaling in neurodegenerative disorders affecting cholinergic neurocircuitries, including Parkinson's and Alzheimer's diseases, need to be explored.


Assuntos
Gânglios da Base , Hormônio Liberador de Gonadotropina/metabolismo , Neurônios , Adulto , Prosencéfalo Basal/citologia , Gânglios da Base/citologia , Gânglios da Base/metabolismo , Gânglios da Base/fisiologia , Células Cultivadas , Colina O-Acetiltransferase , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neurônios/citologia , Neurônios/metabolismo , Neurônios/fisiologia , Putamen/citologia , Transcriptoma
6.
Neuroendocrinology ; 111(3): 249-262, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32299085

RESUMO

BACKGROUND: Kisspeptin (KP) neurons in the rostral periventricular region of the 3rd ventricle (RP3V) of female rodents mediate positive estrogen feedback to gonadotropin-releasing hormone neurons and, thus, play a fundamental role in the mid-cycle luteinizing hormone (LH) surge. The RP3V is sexually dimorphic, and male rodents with lower KP cell numbers are unable to mount estrogen-induced LH surges. OBJECTIVE: To find and characterize the homologous KP neurons in the human brain, we studied formalin-fixed post-mortem hypothalami. METHODS: Immunohistochemical techniques were used. RESULTS: The distribution of KP neurons in the rostral hypothalamus overlapped with distinct subdivisions of the paraventricular nucleus. The cell numbers decreased after menopause, indicating that estrogens positively regulate KP gene expression in the rostral hypothalamus in humans, similarly to several other species. Young adult women and men had similar cell numbers, as opposed to rodents reported to have more KP neurons in the RP3V of females. Human KP neurons differed from the homologous rodent cells as well, in that they were devoid of enkephalins, galanin and tyrosine hydroxylase. Further, they did not contain known KP neuron markers of the human infundibular nucleus, neurokinin B, substance P and cocaine- and amphetamine-regulated transcript, while they received afferent input from these KP neurons. CONCLUSIONS: The identification and positive estrogenic regulation of KP neurons in the human rostral hypothalamus challenge the long-held view that positive estrogen feedback may be restricted to the mediobasal part of the hypothalamus in primates and point to the need of further anatomical, molecular and functional studies of rostral hypothalamic KP neurons.


Assuntos
Estrogênios/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Menopausa/metabolismo , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Área Pré-Óptica/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Autopsia , Feminino , Humanos , Imuno-Histoquímica , Masculino , Microscopia Confocal , Pessoa de Meia-Idade , Núcleo Hipotalâmico Paraventricular/citologia , Área Pré-Óptica/citologia , Adulto Jovem
7.
Front Neurosci ; 14: 598707, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33343288

RESUMO

Neurons co-synthesizing kisspeptin (KP), neurokinin B (NKB), and dynorphin ("KNDy neurons") in the hypothalamic arcuate/infundibular nucleus (INF) form a crucial component of the gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH) "pulse generator." The goal of our study was to characterize KP neuron distribution, neuropeptide phenotype and connectivity to GnRH cells in ovariectomized (OVX) dogs and cats with immunohistochemistry on formalin-fixed hypothalamic tissue sections. In both species, KP and NKB neurons occurred in the INF and the two cell populations overlapped substantially. Dynorphin was detected in large subsets of canine KP (56%) and NKB (37%) cells and feline KP (64%) and NKB (57%) cells; triple-labeled ("KNDy") somata formed ∼25% of all immunolabeled neurons. Substance P (SP) was present in 20% of KP and 29% of NKB neurons in OVX cats but not dogs, although 26% of KP and 24% of NKB neurons in a gonadally intact male dog also contained SP signal. Only in cats, cocaine- and amphetamine regulated transcript was also colocalized with KP (23%) and NKB (7%). In contrast with reports from mice, KP neurons did not express galanin in either carnivore. KP neurons innervated virtually all GnRH neurons in both species. Results of this anatomical study on OVX animals reveal species-specific features of canine and feline mediobasal hypothalamic KP neurons. Anatomical and neurochemical similarities to and differences from the homologous KP cells of more extensively studied rodent, domestic and primate species will enhance our understanding of obligate and facultative players in the molecular mechanisms underlying pulsatile GnRH/LH secretion.

8.
Neuroendocrinology ; 109(3): 230-241, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30612127

RESUMO

The human infundibular nucleus (corresponding to the rodent arcuate nucleus) serves as an important integration center for neuronal signals and hormones released by peripheral endocrine organs. Kisspeptin (KP)-producing neurons of this anatomical site, many of which also synthesize neurokinin B (NKB), are critically involved in sex hormone signaling to gonadotropin-releasing hormone (GnRH) neurons. In recent years, the basic topography, morphology, neuropeptide content, and connectivity of human KP neurons have been investigated with in situ hybridization and immunohistochemistry on postmortem tissues. These studies revealed that human KP neurons differ neurochemically from their rodent counterparts and show robust aging-related plasticity. Earlier immunohistochemical experiments also provided evidence for temporal changes in the hypothalamus of aging men whose NKB and KP neurons undergo hypertrophy, increase in number, exhibit increased neuropeptide mRNA expression and immunoreactivity and give rise to higher numbers of immunoreactive fibers and afferent contacts onto GnRH neurons. Increasing percentages of KP-expressing NKB perikarya, NKB axons, and NKB inputs to GnRH neurons raise the intriguing possibility that a significant subset of NKB neurons begins to cosynthesize KP as aging advances. Although use of postmortem tissues is technically challenging, recently available single-cell anatomical and molecular approaches discussed in this review provide promising new tools to investigate the aging-related anatomical and functional plasticity of the human KP neuronal system.


Assuntos
Envelhecimento/metabolismo , Encéfalo/citologia , Encéfalo/metabolismo , Kisspeptinas/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Envelhecimento/patologia , Encéfalo/patologia , Humanos , Neurônios/patologia
9.
Brain Struct Funct ; 223(5): 2143-2156, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29380121

RESUMO

Kisspeptin (KP) synthesizing neurons of the hypothalamic infundibular region are critically involved in the central regulation of fertility; these cells regulate pulsatile gonadotropin-releasing hormone (GnRH) secretion and mediate sex steroid feedback signals to GnRH neurons. Fine structural analysis of the human KP system is complicated by the use of post mortem tissues. To gain better insight into the neuroanatomy of the somato-dendritic cellular compartment, we introduced the diolistic labeling of immunohistochemically identified KP neurons using a gene gun loaded with the lipophilic dye, DiI. Confocal microscopic studies of primary dendrites in 100-µm-thick tissue sections established that 79.3% of KP cells were bipolar, 14.1% were tripolar, and 6.6% were unipolar. Primary dendrites branched sparsely, contained numerous appendages (9.1 ± 1.1 spines/100 µm dendrite), and received rich innervation from GABAergic, glutamatergic, and KP-containing terminals. KP neuron synaptology was analyzed with immunoelectron microscopy on perfusion-fixed specimens. KP axons established frequent contacts and classical synapses on unlabeled, and on KP-immunoreactive somata, dendrites, and spines. Synapses were asymmetric and the presynaptic structures contained round and regular synaptic vesicles, in addition to dense-core granules. Although immunofluorescent studies failed to detect vesicular glutamate transporter isoforms in KP axons, ultrastructural characteristics of synaptic terminals suggested use of glutamatergic, in addition to peptidergic, neurotransmission. In summary, immunofluorescent and DiI labeling of KP neurons in thick hypothalamic sections and immunoelectron microscopic studies of KP-immunoreactive neurons in brains perfusion-fixed shortly post mortem allowed us to identify previously unexplored fine structural features of KP neurons in the mediobasal hypothalamus of humans.


Assuntos
Hipotálamo/citologia , Kisspeptinas/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Idoso , Idoso de 80 Anos ou mais , Autopsia , Axônios/metabolismo , Axônios/ultraestrutura , Carbocianinas/metabolismo , Corpo Celular/ultraestrutura , Dendritos/metabolismo , Dendritos/ultraestrutura , Ácido Glutâmico/metabolismo , Humanos , Imageamento Tridimensional , Kisspeptinas/ultraestrutura , Lisina/análogos & derivados , Lisina/metabolismo , Masculino , Microscopia Confocal , Microscopia Imunoeletrônica , Pessoa de Meia-Idade , Rede Nervosa/metabolismo , Rede Nervosa/ultraestrutura , Sinapses/metabolismo , Sinapses/ultraestrutura , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/ultraestrutura , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/ultraestrutura , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...